3.2. 浮点数

Go语言提供了两种精度的浮点数,float32和float64。它们的算术规范由IEEE754浮点数国际标准定义,该浮点数规范被所有现代的CPU支持。

这些浮点数类型的取值范围可以从很微小到很巨大。浮点数的范围极限值可以在math包找到。常量math.MaxFloat32表示float32能表示的最大数值,大约是 3.4e38;对应的math.MaxFloat64常量大约是1.8e308。它们分别能表示的最小值近似为1.4e-45和4.9e-324。

一个float32类型的浮点数可以提供大约6个十进制数的精度,而float64则可以提供约15个十进制数的精度;通常应该优先使用float64类型,因为float32类型的累计计算误差很容易扩散,并且float32能精确表示的正整数并不是很大(译注:因为float32的有效bit位只有23个,其它的bit位用于指数和符号;当整数大于23bit能表达的范围时,float32的表示将出现误差):

var f float32 = 16777216 // 1 << 24
fmt.Println(f == f+1)    // "true"!

浮点数的字面值可以直接写小数部分,像这样:

const e = 2.71828 // (approximately)

小数点前面或后面的数字都可能被省略(例如.707或1.)。很小或很大的数最好用科学计数法书写,通过e或E来指定指数部分:

const Avogadro = 6.02214129e23  // 阿伏伽德罗常数
const Planck   = 6.62606957e-34 // 普朗克常数

用Printf函数的%g参数打印浮点数,将采用更紧凑的表示形式打印,并提供足够的精度,但是对应表格的数据,使用%e(带指数)或%f的形式打印可能更合适。所有的这三个打印形式都可以指定打印的宽度和控制打印精度。

for x := 0; x < 8; x++ {
    fmt.Printf("x = %d e^x = %8.3f\n", x, math.Exp(float64(x)))
}

上面代码打印e的幂,打印精度是小数点后三个小数精度和8个字符宽度:

x = 0       e^x =    1.000
x = 1       e^x =    2.718
x = 2       e^x =    7.389
x = 3       e^x =   20.086
x = 4       e^x =   54.598
x = 5       e^x =  148.413
x = 6       e^x =  403.429
x = 7       e^x = 1096.633

math包中除了提供大量常用的数学函数外,还提供了IEEE754浮点数标准中定义的特殊值的创建和测试:正无穷大和负无穷大,分别用于表示太大溢出的数字和除零的结果;还有NaN非数,一般用于表示无效的除法操作结果0/0或Sqrt(-1).

var z float64
fmt.Println(z, -z, 1/z, -1/z, z/z) // "0 -0 +Inf -Inf NaN"

函数math.IsNaN用于测试一个数是否是非数NaN,math.NaN则返回非数对应的值。虽然可以用math.NaN来表示一个非法的结果,但是测试一个结果是否是非数NaN则是充满风险的,因为NaN和任何数都是不相等的(译注:在浮点数中,NaN、正无穷大和负无穷大都不是唯一的,每个都有非常多种的bit模式表示):

nan := math.NaN()
fmt.Println(nan == nan, nan < nan, nan > nan) // "false false false"

如果一个函数返回的浮点数结果可能失败,最好的做法是用单独的标志报告失败,像这样:

func compute() (value float64, ok bool) {
    // ...
    if failed {
        return 0, false
    }
    return result, true
}

接下来的程序演示了通过浮点计算生成的图形。它是带有两个参数的z = f(x, y)函数的三维形式,使用了可缩放矢量图形(SVG)格式输出,SVG是一个用于矢量线绘制的XML标准。图3.1显示了sin(r)/r函数的输出图形,其中r是sqrt(x*x+y*y)

gopl.io/ch3/surface

// Surface computes an SVG rendering of a 3-D surface function.
package main

import (
    "fmt"
    "math"
)

const (
    width, height = 600, 320            // canvas size in pixels
    cells         = 100                 // number of grid cells
    xyrange       = 30.0                // axis ranges (-xyrange..+xyrange)
    xyscale       = width / 2 / xyrange // pixels per x or y unit
    zscale        = height * 0.4        // pixels per z unit
    angle         = math.Pi / 6         // angle of x, y axes (=30°)
)

var sin30, cos30 = math.Sin(angle), math.Cos(angle) // sin(30°), cos(30°)

func main() {
    fmt.Printf("<svg xmlns='http://www.w3.org/2000/svg' "+
        "style='stroke: grey; fill: white; stroke-width: 0.7' "+
        "width='%d' height='%d'>", width, height)
    for i := 0; i < cells; i++ {
        for j := 0; j < cells; j++ {
            ax, ay := corner(i+1, j)
            bx, by := corner(i, j)
            cx, cy := corner(i, j+1)
            dx, dy := corner(i+1, j+1)
            fmt.Printf("<polygon points='%g,%g %g,%g %g,%g %g,%g'/>\n",
                ax, ay, bx, by, cx, cy, dx, dy)
        }
    }
    fmt.Println("</svg>")
}

func corner(i, j int) (float64, float64) {
    // Find point (x,y) at corner of cell (i,j).
    x := xyrange * (float64(i)/cells - 0.5)
    y := xyrange * (float64(j)/cells - 0.5)

    // Compute surface height z.
    z := f(x, y)

    // Project (x,y,z) isometrically onto 2-D SVG canvas (sx,sy).
    sx := width/2 + (x-y)*cos30*xyscale
    sy := height/2 + (x+y)*sin30*xyscale - z*zscale
    return sx, sy
}

func f(x, y float64) float64 {
    r := math.Hypot(x, y) // distance from (0,0)
    return math.Sin(r) / r
}

要注意的是corner函数返回了两个结果,分别对应每个网格顶点的坐标参数。

要解释这个程序是如何工作的需要一些基本的几何学知识,但是我们可以跳过几何学原理,因为程序的重点是演示浮点数运算。程序的本质是三个不同的坐标系中映射关系,如图3.2所示。第一个是100x100的二维网格,对应整数坐标(i,j),从远处的(0,0)位置开始。我们从远处向前面绘制,因此远处先绘制的多边形有可能被前面后绘制的多边形覆盖。

第二个坐标系是一个三维的网格浮点坐标(x,y,z),其中x和y是i和j的线性函数,通过平移转换为网格单元的中心,然后用xyrange系数缩放。高度z是函数f(x,y)的值。

第三个坐标系是一个二维的画布,起点(0,0)在左上角。画布中点的坐标用(sx,sy)表示。我们使用等角投影将三维点(x,y,z)投影到二维的画布中。

画布中从远处到右边的点对应较大的x值和较大的y值。并且画布中x和y值越大,则对应的z值越小。x和y的垂直和水平缩放系数来自30度角的正弦和余弦值。z的缩放系数0.4,是一个任意选择的参数。

对于二维网格中的每一个网格单元,main函数计算单元的四个顶点在画布中对应多边形ABCD的顶点,其中B对应(i,j)顶点位置,A、C和D是其它相邻的顶点,然后输出SVG的绘制指令。

练习 3.1: 如果f函数返回的是无限制的float64值,那么SVG文件可能输出无效的多边形元素(虽然许多SVG渲染器会妥善处理这类问题)。修改程序跳过无效的多边形。

练习 3.2: 试验math包中其他函数的渲染图形。你是否能输出一个egg box、moguls或a saddle图案?

练习 3.3: 根据高度给每个多边形上色,那样峰值部将是红色(#ff0000),谷部将是蓝色(#0000ff)。

练习 3.4: 参考1.7节Lissajous例子的函数,构造一个web服务器,用于计算函数曲面然后返回SVG数据给客户端。服务器必须设置Content-Type头部:

w.Header().Set("Content-Type", "image/svg+xml")

(这一步在Lissajous例子中不是必须的,因为服务器使用标准的PNG图像格式,可以根据前面的512个字节自动输出对应的头部。)允许客户端通过HTTP请求参数设置高度、宽度和颜色等参数。

最后编辑: kuteng  文档更新时间: 2021-06-17 16:00   作者:kuteng