扫描标记与标记辅助
func gcBgMarkWorker(_p_ *p) {
gp := getg()
type parkInfo struct {
m muintptr // Release this m on park.
attach puintptr // If non-nil, attach to this p on park.
}
// We pass park to a gopark unlock function, so it can't be on
// the stack (see gopark). Prevent deadlock from recursively
// starting GC by disabling preemption.
gp.m.preemptoff = "GC worker init"
park := new(parkInfo)
gp.m.preemptoff = ""
park.m.set(acquirem())
park.attach.set(_p_)
// Inform gcBgMarkStartWorkers that this worker is ready.
// After this point, the background mark worker is scheduled
// cooperatively by gcController.findRunnable. Hence, it must
// never be preempted, as this would put it into _Grunnable
// and put it on a run queue. Instead, when the preempt flag
// is set, this puts itself into _Gwaiting to be woken up by
// gcController.findRunnable at the appropriate time.
notewakeup(&work.bgMarkReady)
for {
// Go to sleep until woken by gcController.findRunnable.
// We can't releasem yet since even the call to gopark
// may be preempted.
gopark(func(g *g, parkp unsafe.Pointer) bool {
park := (*parkInfo)(parkp)
// The worker G is no longer running, so it's
// now safe to allow preemption.
releasem(park.m.ptr())
// If the worker isn't attached to its P,
// attach now. During initialization and after
// a phase change, the worker may have been
// running on a different P. As soon as we
// attach, the owner P may schedule the
// worker, so this must be done after the G is
// stopped.
if park.attach != 0 {
p := park.attach.ptr()
park.attach.set(nil)
// cas the worker because we may be
// racing with a new worker starting
// on this P.
if !p.gcBgMarkWorker.cas(0, guintptr(unsafe.Pointer(g))) {
// The P got a new worker.
// Exit this worker.
return false
}
}
return true
}, unsafe.Pointer(park), waitReasonGCWorkerIdle, traceEvGoBlock, 0)
// Loop until the P dies and disassociates this
// worker (the P may later be reused, in which case
// it will get a new worker) or we failed to associate.
if _p_.gcBgMarkWorker.ptr() != gp {
break
}
// Disable preemption so we can use the gcw. If the
// scheduler wants to preempt us, we'll stop draining,
// dispose the gcw, and then preempt.
park.m.set(acquirem())
...
startTime := nanotime()
_p_.gcMarkWorkerStartTime = startTime
decnwait := atomic.Xadd(&work.nwait, -1)
...
systemstack(func() {
// Mark our goroutine preemptible so its stack
// can be scanned. This lets two mark workers
// scan each other (otherwise, they would
// deadlock). We must not modify anything on
// the G stack. However, stack shrinking is
// disabled for mark workers, so it is safe to
// read from the G stack.
casgstatus(gp, _Grunning, _Gwaiting)
switch _p_.gcMarkWorkerMode {
...
case gcMarkWorkerDedicatedMode:
gcDrain(&_p_.gcw, gcDrainUntilPreempt|gcDrainFlushBgCredit)
if gp.preempt {
// We were preempted. This is
// a useful signal to kick
// everything out of the run
// queue so it can run
// somewhere else.
lock(&sched.lock)
for {
gp, _ := runqget(_p_)
if gp == nil {
break
}
globrunqput(gp)
}
unlock(&sched.lock)
}
// Go back to draining, this time
// without preemption.
gcDrain(&_p_.gcw, gcDrainFlushBgCredit)
case gcMarkWorkerFractionalMode:
gcDrain(&_p_.gcw, gcDrainFractional|gcDrainUntilPreempt|gcDrainFlushBgCredit)
case gcMarkWorkerIdleMode:
gcDrain(&_p_.gcw, gcDrainIdle|gcDrainUntilPreempt|gcDrainFlushBgCredit)
}
casgstatus(gp, _Gwaiting, _Grunning)
})
// Account for time.
duration := nanotime() - startTime
switch _p_.gcMarkWorkerMode {
case gcMarkWorkerDedicatedMode:
atomic.Xaddint64(&gcController.dedicatedMarkTime, duration)
atomic.Xaddint64(&gcController.dedicatedMarkWorkersNeeded, 1)
case gcMarkWorkerFractionalMode:
atomic.Xaddint64(&gcController.fractionalMarkTime, duration)
atomic.Xaddint64(&_p_.gcFractionalMarkTime, duration)
case gcMarkWorkerIdleMode:
atomic.Xaddint64(&gcController.idleMarkTime, duration)
}
// Was this the last worker and did we run out
// of work?
incnwait := atomic.Xadd(&work.nwait, +1)
if incnwait > work.nproc {
...
}
// If this worker reached a background mark completion
// point, signal the main GC goroutine.
if incnwait == work.nproc && !gcMarkWorkAvailable(nil) {
// Make this G preemptible and disassociate it
// as the worker for this P so
// findRunnableGCWorker doesn't try to
// schedule it.
_p_.gcBgMarkWorker.set(nil)
releasem(park.m.ptr())
gcMarkDone()
// Disable preemption and prepare to reattach
// to the P.
//
// We may be running on a different P at this
// point, so we can't reattach until this G is
// parked.
park.m.set(acquirem())
park.attach.set(_p_)
}
}
}
进一步阅读的参考文献
最后编辑: kuteng 文档更新时间: 2021-10-19 14:31 作者:kuteng