在某些场景,我们只希望一个任务有单一的执行者,而不像计数器一样,所有的 Goroutine 都成功执行。后续的 Goroutine 在抢锁失败后,需要放弃执行,这时候就需要尝试加锁 / trylock
。
尝试加锁,在加锁成功后执行后续流程,失败时不可以阻塞,而是直接返回加锁的结果。
在 Go 语言中可以用大小为 1 的 Channel 来模拟 trylock:
// Lock try lock
type Lock struct {
c chan struct{}
}
// Lock try lock, return lock result
func (l Lock) Lock() bool {
result := false
select {
case <-l.c:
result = true
default:
}
return result
}
// Unlock the try lock
func (l Lock) Unlock() {
l.c <- struct{}{}
}
// NewLock generate a try lock
func NewLock() Lock {
var l Lock
l.c = make(chan struct{}, 1)
l.c <- struct{}{}
return l
}
func main() {
var lock = NewLock()
var wg sync.WaitGroup
for i := 0; i < 10; i++ {
wg.Add(1)
go func() {
defer wg.Done()
if !lock.Lock() {
println("lock failed")
return
}
counter++
println("current counter: ", counter)
lock.Unlock()
}()
}
wg.Wait()
}
每个 Goruntine 只有成功执行了Lock()
才会继续执行后续代码,因此在Unlock()
时可以保证Lock
结构体里的 Channel 一定是空的,所以不会阻塞也不会失败。
在单机系统中,trylock 并不是一个好选择,因为大量的 Goruntine 抢锁会无意义地占用 cpu 资源,这就是活锁。
活锁指是的程序看起来在正常执行,但 cpu 周期被浪费在抢锁而非执行任务上,从而程序整体的执行效率低下。活锁的问题定位起来很麻烦,所以在单机场景下,不建议使用这种锁。
最后编辑: kuteng 文档更新时间: 2022-03-22 19:29 作者:kuteng